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Grain size distribution (GSD) is an important attribute
of polycrystalline materials. For microstructure evolu-
tion processes such as grain growth, the evolution of
grain size distribution can be predicted from both the-
oretical considerations [1] and computer simulations
[2, 3].

Tikare et al. [2] compared two simulation models,
i.e., the phase field model and the Potts model, and
found that the GSDs obtained by these two models are
very similar, but they did not provide the functional
form of the GSDs.

In a recently published work, Wang et al. [3, 4]
employed the Monte Carlo Potts method to study the
grain growth process starting from initial microstruc-
tures with different grain size distributions. Their re-
sults show that the quasi-steady state grain size distri-
bution has a Weibull function form, which is different
from the Louat distribution form as reported by Fan and
Chen [5] using a phase field method.

In this paper, the phase field model [5] was employed
to investigate the quasi-steady state GSD in 2D in order
to find reasons for the discrepancy mentioned above. A
512 × 512 square lattice was used for the simulation
with periodic boundary conditions applied along both
Cartesian coordinate axes. The grid size �x was chosen
to be 2.0 and the time step �t to be 0.25. The number
of field variables p was assumed to be 36.

The computer simulation started by assigning to all
field variables a random value between −0.001 and
0.001, which corresponds to a super-cooled liquid state,
and then allowing crystallization to occur, which gen-
erates a fine grain microstructure. Further microstruc-
ture evolution corresponds to the grain growth process.
The microstructures at t = 1000 TS and t = 5000 TS
is shown in Fig. 1.

The grain size distribution obtained at time t =
1000 TS is shown in Fig. 2a. It can be seen that both
Weibull function [6] and Louat function [7] give sat-
isfactory fit to the simulated GSD, with their corre-
sponding chi-square values better than 0.003 and the
determination coefficients better than 0.98. It can also
be clearly seen from the figure that the Weibull func-
tion agrees much better with the simulated GSD than
the lognormal function [8]. The same is true over the
whole simulation regime, as shown in Fig. 2b and c.

At t = 3000 TS, the Weibull function agrees a little
better with the GSD than the Louat function. But when
t > 4000 TS, both Weibull (β = 2.1) and Louat (α =

Figure 1 Microstructure evolution produced using the phase field
method (TS = time step).

0.8) functions give satisfactory fit to the GSDs again. So
it is necessary to further compare these two functions.

The Weibull function can be written as:

Weibull(r ) = β

αβ
rβ−1exp

[
−

(
r

α

)β]
(2)

where β is an adjustable parameters and α =
1/�(1 + 1/β). The Louat function has a form:

Louat(r ) = 2αr exp(−αr2) (1)

where α is an adjustable parameter.
Comparing the two functions above, it can be found

that when β in Equation 2 equals to 2, the Weibull
function actually reduces to the Louat function form
with α = (�(1 + 1/β))2 in Equation 1. It can be eas-
ily verified in Fig. 3a where the two curves overlap.
Fig. 3b shows further comparison between these two
functions. It can be seen that Weibull function curves
with parameter β ranging from 1.9–2.1 are very close
to the Louat function curves with parameter α ranging
from 0.7–0.9. This may indicate that the two functions
can replace each other within this range, leading to the
cases in Fig. 2a and c. Outside this range, however, the
difference between these two functions becomes obvi-
ous, such as the case in Fig. 2b.

From the discussions above, there exists no signifi-
cant discrepancy between Wang and Liu’s Weibull-type
GSD [3, 4] obtained from Monte Carlo Potts simula-
tion, shown in Fig. 4a, with Fan and Chen’s Louat-
type GSD [5] from phase field simulation. It can also
be deduced that Weibull function fits the GSDs well
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Figure 2 GSDs at different time steps, comparing with the lognormal [16], Weibulll and Louat functions.
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Figure 3 Comparison between Weibulll and Louat functions.

over the whole simulation regime using both simula-
tion methods.

For more evidence, the quasi-steady state GSDs ob-
tained from three other different simulation techniques
are also shown in Fig. 4.

Battail and Holm [9] produced initial microstructures
with GSDs of Hillert distribution form through two dif-
ferent approaches, and then let them evolve by perform-
ing the Monte Carlo algorithm. The GSD obtained is
plotted in Fig. 4b. We fitted the data with the Weibull
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Figure 4 GSDs obtained from different simulation techniques.

function and found that the chi-square value is better
than 0.002 and the determination coefficient better than
0.99. This fact further suggests that the Weibull func-
tion is at least one of suitable forms to describe the
quasi-steady state GSD in 2D grain growth process.

Marthinsen et al. [10] used Surface Evolver1 to simu-
late the normal grain growth in 2D. Their result, shown
in Fig. 4c, also can be well described by the Weibull
function with the chi-square value close to zero and the
determination coefficient better than 0.99.

Fig. 4d shows the GSD acquired using the general
statistics method [11]. Again the Weibull function fits
it well with the chi-squares value better than 0.003 and
the determination coefficient better than 0.98, which
further demonstrates that Weibull function is suitable
to describe the quasi-steady state GSD in 2D.

In conclusion, the grain size distributions obtained
using the phase field method is not only very similar to
the GSDs obtained by the Monte Carlo Potts model [3,
4, 9], but also quite similar to those obtained by both the
Surface Evolver method [10] and the general statistics
method [11] as demonstrated in Fig. 4.

1Surface Evolver is a computer program first developed by K. A. Brakke
(See: Exp. Math. 1 (1992) 141).

It is further concluded that the Weibull function is
at least one of the mathematical expressions suitable to
describe the quasi-steady state grain size distribution in
2D normal grain growth resulting from all the four dif-
ferent simulation techniques mentioned above. No es-
sential difference exists among the basic forms of grain
size distributions obtained in References [3–5, 9–11]
and this work, though different simulation techniques
were employed.
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